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Abstract In this paper, we consider two-stage adjustable robust linear optimization
problems under uncertain constraints and study the performance of piecewise static
policies. These are a generalization of static policies where we divide the uncertainty
set into several pieces and specify a static solution for each piece. We show that
in the worst-case, there is no piecewise static policy with a polynomial number of
pieces that has a significantly better performance than an optimal static policy. This is
quite surprising as piecewise static policies are significantly more general than static
policies. The proof is based on a combinatorial argument and the structure of piecewise
static policies.
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Mathematics Subject Classification 90C39 · 90C47 · 49K35

1 Introduction

In many real world problems, parameters are uncertain at the optimization phase.
Stochastic optimization has been studied extensively in the literature to address the
parameter uncertainty (see Dantzig [16], Beale [2], Prekopa [28], Shapiro [29],
Shapiro et al. [30]). In stochastic optimization, uncertainty is modeled by probability
distributions and the goal is to optimize over an expected objective. By and large,
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computing the optimal solution is intractable (see Shapiro and Nemirovski [31], Dyer
and Stougie [18], Hanasusanto et al. [25]). Moreover, in many cases, we do not have
sufficient historical data to estimate a joint multivariate probability distribution.

Robust optimization is another approach that has been studied extensively in the
literature. In a robust optimization approach, the uncertain parameters are assumed to
belong to a given uncertainty set U and an adversary selects the uncertain parameters
from U . The goal is to optimize the worst-case objective (see Ben-Tal and Nemirovski
[5], El Ghaoui and Lebret [19], Bertsimas and Sim [13,14], Goldfarb and Iyengar
[22]). Computing a static robust solution that is feasible for all scenarios is tractable
for a large class of robust optimization problems. However, an optimal adjustable
(dynamic) solution is significantly more challenging to compute.

In this paper, we consider the following two-stage adjustable robust linear opti-
mization problem, ΠAR(U) under uncertain constraint coefficients:

zAR(U) = max cT x + min
B∈U

max
y(B)

dT y(B)

subject to Ax + By(B) ≤ h, ∀B ∈ U
x ∈ Rn1

+
y(B) ∈ Rn2

+ , ∀B ∈ U .

(1.1)

where A ∈ Rm×n1 , c ∈ Rn1
+ , d ∈ Rn2

+ , h ∈ Rm
+. Also,U ⊆ Rm×n2

+ is a full dimensional
compact convex down-monotone uncertainty set in the non-negative orthant. Follow-
ing Bertsimas et al. [10], we can assume without loss of generality that U is down-
monotone and n1 = n2 = n (A set S ⊆ Rn

+ is down-monotone if s ∈ S, t ∈ Rn
+ and

t ≤ s implies t ∈ S). Note that x represents the first-stage decisions and y(B) repre-
sents the second-stage decisions after observing the uncertain constraintmatrix B ∈ U .

The above formulation models many interesting applications including revenue
management and resource allocation problems with uncertain demand. For instance,
in a resource allocation application, the right hand side h can model the fixed resource
capacities and the uncertain coefficients in B model the uncertain requirements of
resources for demand. The goal is to find an optimal allocation of resources that
maximizes the worst-case profit (see Wiesemann et al. [33]). When m = 1, the above
problem reduces to a fractional knapsack problem with uncertain item sizes. The
stochastic version of the knapsack problem has been widely studied in the literature
(see Dean et al. [17], Goel and Indyk [21], Goyal and Ravi [23]).

In general, it is intractable to compute an optimal adjustable robust solution for
(1.1). The worst-case can occur in the interior of U . Therefore, even if U has a small
number of extreme points, it is not clear if problem (1.1) can be solved efficiently.
In fact, Awasthi et al. [1] show that the two-stage adjustable robust problem (1.1) is
Ω(log n)-hard to approximate if the uncertainty set of constraint coefficients belongs
to the non-negative orthant. In other words, there is no polynomial time algorithm
that approximates the optimal adjustable solution within a factor better than log n.
Therefore, the goal is to construct approximate policies with good performance. A
static solution approach, where we give a single solution feasible for all scenarios, has
been widely studied in the literature. We can formulate the static robust optimization
problem ΠRob(U) to approximate (1.1) as follows.
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zRob(U) = maxcT x + dT y
subject toAx + By ≤ h ∀B ∈ U

x ∈ Rn
+, y ∈ Rn

+.

(1.2)

As we mention earlier, an optimal static solution can be computed efficiently for a
large class of problems (see Bertsimas et al. [7], Ben-Tal et al. [3]). Ben-Tal and
Nemirovski [6] show that a static solution is optimal for (1.1) if the uncertainty set
is constraint-wise where each constraint is selected independently from a compact
convex set Ui (i.e. U is a Cartesian product of Ui , i = 1, . . . ,m). Bertsimas et al.
[10] generalize the result of [6] and show that a static solution is near optimal for
several interesting families of U . In particular, they give a tight characterization on
the performance of the static solution related to the measure of non-convexity of
a transformation of the uncertainty set U . While a static solution provides a good
approximation in many cases, it can be as bad as a factor m away from the optimal
adjustable solution in the worst-case.

The performance of static policies has also been studied for other models. Bertsi-
mas et al. [11] study two-stage and multi-stage adjustable robust linear optimization
problemswith covering constraints and the uncertainty in the right hand side and relate
the performance of static solutions to a measure of symmetry of the uncertainty set.
More general policies such as affine policies or piecewise static policies for dynamic
optimization problems under uncertainty have been considered in the literature. For
instance, Charnes et al. [15] and Garstka and Wets [20] were the first to study affine
decision rules in the context of stochastic optimization where recourse decisions are
restricted to be affine decisions of the uncertain parameters. Ben-Tal et al. [4] consider
affine policies for adjustable robust problems that have been subsequently studied
extensively in the literature (see Kuhn et al. [27], Bertsimas et al. [12], Iancu et al.
[26], Bertsimas and Goyal [9], Skaf and Boyd [32]).

Piecewise static policies is another solution approach that has been studied in the
literature. A piecewise static policy is a generalization of the static policy where the
uncertainty set is divided into several pieces and we specify a static policy for each
piece. Bertsimas and Caramanis [8] consider a piecewise static solution approach
(also referred to as finite K -adaptability) where they propose a hierarchy of increas-
ing adaptability that bridges the gap between the static robust formulation, and the
fully adaptable formulation. Hanasusanto et al. [24] consider a K -adaptable solution
approach for two-stage robust integers optimization problems.

1.1 Our contributions

In this paper, we consider the piecewise static solution approach for (1.1). In particular,
we consider a piecewise policy with p pieces (or subsets): U1, . . . ,Up of U such that

U = ∪
1≤i≤p

Ui ,

where each Ui is convex, compact and down-monotone uncertainty subset. Note that
Ui are not necessarily disjoint. We can formulate the two-stage piecewise robust linear
optimization problem ΠPR(U1, . . . ,Up) as follows:
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zPR(U1, . . . ,Up) = maxcT x + min(dT y1, d
T y2, . . . , d

T yp)

subject to Ax + Bi yi ≤ h ∀i ∈ [p], ∀Bi ∈ Ui

x ∈ Rn
+, yi ∈ Rn

+ ∀i ∈ [p].
(1.3)

We show that the performance of the optimal piecewise static policy for given pieces
is related to the maximum of the measures of non-convexity of transformations of the
pieces Ui ; thereby extending the bound in [10] for piecewise static policies. Note that
if the pieces Ui are given explicitly, we can efficiently compute an optimal piecewise
static policy provided that we can solve linear optimization over each Ui efficiently.
However, one of the main challenges in designing a good piecewise static policy, is
to construct good pieces of the uncertainty set. In fact, Bertsimas and Caramanis [8]
show that it is NP-hard to construct the optimal pieces for piecewise policies with only
two pieces for two-stage robust linear programs in general.

Our main contribution in this paper is to show that even if we ignore the com-
putational complexity of computing optimal pieces, surprisingly the performance of
piecewise static policies with a polynomial number of pieces is not significantly better
than a static policy in the worst-case. In particular, we show that there is no piecewise
static policy with polynomial number of pieces that gives an approximation bound bet-
ter than O(m1−ϵ) for any ϵ > 0 for the worst-case uncertainty set U ⊆ Rm×n

+ where
the approximation bound for the static policy is m. We prove this by constructing a
family of instances of U for any ϵ > 0, such that the performance of the static policy
is m and the performance of any piecewise policy with polynomial number of pieces
is Ω(m1−ϵ). Our proof is based on a combinatorial argument and structural results
about piecewise static policies. On the positive side, we present examples where the
performance can be significantly improved by considering piecewise static policies
with exponentially many pieces.
Outline The rest of the paper is organized as follows. We present the preliminaries
in Sect. 2. In Sect. 3, we present the structural results for piecewise static policies.
Finally, we present the lower bound on the performance of piecewise static policies in
Sect. 4.

2 Preliminaries: static policies

In this section, we present some preliminaries and definitions before presenting our
results.We refer to Bertsimas et al. [10] who give a tight characterization on the perfor-
mance of a static solution as compared to the optimal adjustable solution for problem
(1.1). Consider the following one-stage adjustable robust problem, Π I

AR(U , h), cor-
responding to (1.1).

z IAR(U , h) = min
B∈U

max
y≥0

{dT y
∣∣B y ≤ h}. (2.1)

The one-stage problem (2.1) is related to the separation problem for the two-stage
adjustable robust optimization problem (1.1). Similarly, we can consider the following
one-stage robust problem, Π I

Rob(U , h), corresponding to (1.2).
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z IRob(U , h) = max
y≥0

{dT y
∣∣B y ≤ h ∀B ∈ U}. (2.2)

Bertsimas et al. [10] give a tight characterization on the performance of a static solu-
tion as compared to the optimal adjustable solution for problem (1.1) based on the
comparison between (2.1) and (2.2). To compare (2.1) and (2.2), they introduce the
following definitions.

Definition 1 (Transformation T (U , ·)) For any h > 0 and convex compact full-
dimensional down-monotone set U ⊆ Rm×n

+ , we define the following transformation:

T (U , h) = {BTµ
∣∣hTµ = 1, B ∈ U ,µ ≥ 0}.

For instance, if h = e, then T (U , e) is the set of all convex combinations of rows of
B ∈ U for all B ∈ U . We would like to note that T (U , ·) is not necessarily convex
even if U is convex. While T (U , ·) may be non-convex and intractable to compute,
conv(T (U , ·)) has a simple representation. Bertsimas et al. [10] give the following
characterization of conv(T (U, ·)).

Lemma 1 (Bertsimas et al. [10]) For any h > 0,

conv(T (U , h)) = conv

⎛

⎝
⋃

1≤i≤m

{
1
hi

BT ei

∣∣∣∣B ∈ U
}⎞

⎠ .

Definition 2 (Measure of non-convexity) For any down-monotone compact set S ⊆
Rn
+, the measure of non-convexity κ(S) is defined as follows:

κ(S) = min{α
∣∣conv(S) ⊆ α · S}.

In other words, κ(S) is the smallest factor by which S must be scaled to contain
the convex hull of S. By definition, κ(S) ≥ 1 and if S is convex κ(S) = 1. It is
important to note that the measure κ(.) is not necessarily defined if S is not down-
monotone. However, for our problem, without loss of generality, we can assume that
the uncertainty sets is down-monotone.

Definition 3 For any convex compact full-dimensional down-monotone set U , let,

ρ(U) = max
h>0

κ(T (U , h)).

Bertsimas et al. [10] show that, if the uncertainty set U is constraint-wise, i.e.

U =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
bT1
...

bTm

⎤

⎥⎦
∣∣∣∣bi ∈ Ui i ∈ [m]

⎫
⎪⎬

⎪⎭
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where for all i = 1, . . . ,m, Ui ⊆ Rn
+ is a compact convex down-monotone set, then

T (U , h) is convex for all h > 0 and the measure of non convexity is ρ(U) = 1.
However, T (U , h) is not necessarily convex for general uncertainty sets. For example,
in the case of the diagonal uncertainty set

U =
{

diag(v)
∣∣∣∣

m∑

i=1

vi ≤ 1, v ≥ 0

}

. (2.3)

T (U , h) is not convex for any h > 0 and ρ(U) = m.
Using the above definitions, Bertsimas et al. [10] give the following reformulations

of (2.1) and (2.2).

Lemma 2 (Bertsimas et al. [10]) Π I
AR(U , h) (2.1) can be reformulated as

z IAR(U , h) = min
λ,b

{λ
∣∣λb ≥ d, b ∈ T (U , h)}

and Π I
Rob(U , h) (2.2) can be reformulated as

z IRob(U , h) = min
λ,b

{λ
∣∣λb ≥ d, b ∈ conv(T (U , h)}.

Based on the above reformulations, Bertsimas et al. [10] present the following
performance bound for static solutions.

Theorem 1 (Bertsimas et al. [10]) Let zAR(U) be the optimal objective value of the
adjustable robust problem (1.1) and zRob(U be the optimal objective value of the static
robust counterpart (1.2). Then

zRob(U) ≤ zAR(U) ≤ ρ(U) · zRob(U),

where ρ(U) is a tight bound.

Note that ρ(U) can be as bad as m in general. The worst-case instance for ρ(U)
is the diagonal uncertainty set (2.3). For this example of uncertainty set we have,
zAR(U) = m · zRob(U). We refer the reader to Bertsimas et al. [10] for more details.

3 Structural results on piecewise static policy

In this section, we introduce the piecewise static policies for the two-stage adjustable
robust optimization problem (1.1) and study the structural properties and performance
of these policies. We first introduce the following definition.

Definition 4 (Convex cover) Let U1,U2, . . . ,Up subsets of U such that Ui is convex,
compact and down-monotone set. We say that U1,U2, . . . ,Up is a convex cover of U
if U = U1 ∪ U2 . . . ∪ Up.
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Note that different pieces are not necessarily disjoint. We only require that the union
of pieces covers U . This ensures that for any B ∈ U , there exists at least one static
solution ( y1, y2, . . . , yp) that is feasible. For any B ∈ U that is contained in multiple
pieces, we can use the static solution corresponding to either piece and in particular,
the one with the better objective.

3.1 Performance of piecewise static policy

Let U = U1 ∪ U2 . . . ∪ Up be a convex cover of U . We relate the performance of the
optimal piecewise static solution to the maximum of the measures of non-convexity
of the transformations T (Ui , ·). Consider the following reformulation of the two-stage
piecewise static robust linear optimization problem (1.3).

zPR(U1, . . . ,Up) = max cT x + z

subject to Ax + Bi yi ≤ h ∀i ∈ [p] ∀Bi ∈ Ui (3.1)

z ≤ dT yi ∀i ∈ [p]
x ∈ Rn

+, yi ∈ Rn
+ ∀i ∈ [p], z ∈ R.

We can compute the solution of this problem efficiently if the number of pieces is
small and linear optimization is efficient over each piece.

Let (x∗, z∗, ( y∗
1, y

∗
2, . . . , y

∗
p)) be an optimal solution of (3.1). Then (x∗, y(B))

where y(B) = y∗
i if B ∈ Ui , is a feasible solution for the adjustable problem (1.1).

Therefore,
zPR(U1, . . . ,Up) ≤ zAR(U). (3.2)

To compute an upper bound for zAR(U) in terms of zPR(U1, . . . ,Up), consider the
following one stage piecewise static problem Π I

PR((U1, . . . ,Up), h):

z IPR((U1, ..,Up), h) = max
yi≥0

i=1,...,p

{z
∣∣Bi yi ≤ h ∀Bi ∈ Ui , z ≤ dT yi , ∀i ∈ [p]}

(3.3)

Lemma 3 For the one stage piecewise static problem Π I
PR((U1, . . . ,Up), h),

z IPR((U1, . . . ,Up), h) = min
1≤i≤p

z IRob(Ui , h).

Lemma3 followsdirectly from (3.3). The following theorem relates the performanceof
a piecewise static solution to the measures of non-convexity of T (Ui , h). In particular,
the performance of a piecewise static solution depends on the geometric structure of
the subsets Ui through the coefficients ρ(Ui ).

Theorem 2 For any convex cover of U such that U = U1 ∪ U2 . . . ∪ Up, we have,

zAR(U) ≤ max(ρ(U1), . . . , ρ(Up)) · zPR(U1, . . . ,Up).

Furthermore, the bound is tight.

123



656 O. El Housni, V. Goyal

Proof Denote λ̂ℓ, b̂ℓ ∈ conv(T (Uℓ, h)) the solutions of the one stage piecewise static
problem Π I

PR((U1, . . . ,Up), h) under the formulations of Lemma 3 and Lemma 2,
where ℓ ∈ [p]. We have z IPR((U1, . . . ,Up), h) = λ̂ℓ and λ̂ℓ b̂ℓ ≥ d, i.e.

κℓλ̂ℓ ·
b̂ℓ

κℓ
≥ d

where κℓ = κ(T (Uℓ, h)). Since,

b̂ℓ

κℓ
∈ T (Uℓ, h) ⊆ T (U , h),

then (κℓλ̂ℓ) is a feasible solution for Π I
AR(U , h) under the formulation of Lemma 2,

i.e. κℓλ̂ℓ ≥ z IAR(U , h).
Moreover, we know that max(ρ(U1), . . . , ρ(Up)) ≥ κℓ. Then,

max(ρ(U1), . . . , ρ(Up)) · z IPR((U1, . . . ,Up), h) ≥ z IAR(U , h).

Therefore,

zAR(U , h) = cT x∗ + z IAR(U , h − Ax∗)

≤ cT x∗ +max(ρ(U1), . . . , ρ(Up)) · z IPR((U1, . . . ,Up), h − Ax∗)

≤ max(ρ(U1), . . . , ρ(Up)) · (cT x∗ + z IPR((U1, . . . ,Up), h − Ax∗))
≤ max(ρ(U1), . . . , ρ(Up)) · zPR(U1, . . . ,Up).

The second inequality follows because for all i ∈ [p], ρ(Ui ) ≥ 1 . The last inequal-
ity follows from the definition (3.3) of the one stage piecewise static problem. The
tightness of the bound follows from the tightness of the bound for static policies [10].

⊓+

3.2 Examples of piecewise static policies

We present several examples to illustrate the performance bound for piecewise static
policies. In particular, we consider the diagonal uncertainty set defined in (2.3) for
which the performance of static policies is the worst possible as compared to the
optimal fully adjustable solution. We first show that without loss of generality, we can
consider pieces of the following form for any convex cover of U (2.3).

V(τ1, τ2, . . . , τm) =

⎧
⎨

⎩diag(v)
∣∣∣∣

m∑

j=1

v j ≤ 1, 0 ≤ v j ≤ τ j ∀ j ∈ [m]

⎫
⎬

⎭ . (3.4)

In particular, we have the following structural lemma.
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Lemma 4 (Structure of Piecewise static policies) Let U = U1 ∪ U2 . . . ∪ Up a
convex cover of the diagonal uncertainty set (2.3). For all i ∈ [p] we define,
Vi = V(τi1, τi2, . . . , τim), where for all i ∈ [p] and j ∈ [m],

τi j = max
diag(v)∈Ui

eTj v.

Then, ∀i ∈ [p], Ui ⊆ Vi ⊆ U and κ(T (Vi , h)) ≤ κ(T (Ui , h)).

Proof Let i ∈ [p]. We have ∀diag(v) ∈ Ui , v j ≤ τi j for j = 1, . . . ,m. Then, Ui ⊆
Vi ⊆ U . Now, we will show that for all i ∈ [p], conv(T (Ui , h)) = conv(T (Vi , h)).
First, since Ui ⊆ Vi , clearly, conv(T (Ui , h)) ⊆ conv(T (Vi , h)). Consider any b ∈
T (Vi , h). Then,

b = diag(v)Tµ,

where
∑m

k=1 µkhk = 1 and diag(v) ∈ Vi . Therefore,

b =
m∑

k=1

µkhk ·
vk

hk
ek

For all k ∈ [m], we have vk ≤ τik and we know that Ui is down-monotone. Therefore,
vkek ∈ Ui and

vk
hk
ek ∈ T (Ui , h). Hence b ∈ conv(T (Ui , h)) and conv(T (Vi , h)) ⊆

conv(T (Ui , h)). Therefore,

conv(T (Vi , h)) = conv(T (Ui , h)) ⊆ κ(T (Ui , h)) · T (Ui , h)

⊆ κ(T (Ui , h)) · T (Vi , h),

which implies κ(T (Vi , h)) ≤ κ(T (Ui , h)). ⊓+
The above lemma provides a characterization of optimal piecewise static policies for
diagonal uncertainty sets (2.3). In particular, the lemma shows that for any convex
cover of the uncertainty set (2.3), there exists a convex cover of the form (3.4) whose
performance is better. Therefore, we can restrict ourselves to convex covers of the the
form (3.4).

In the following lemma,we show thatwe can compute themeasure of non-convexity
of T (V(τ1, τ2, . . . , τm), h) where V(τ1, τ2, . . . , τm) is defined in (3.4).

Lemma 5 Let,

U = V(τ1, τ2, . . . , τm)

where V(τ1, τ2, . . . , τm) is defined in (3.4) such that ∀i ∈ [m], 0 ≤ τi ≤ 1 and∑m
i=1 τi ≥ 1. Then for all h > 0,

κ(T (U , h)) =
m∑

i=1

τi .
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The proof of Lemma 5 is presented in “Appendix”. We now present two examples of
convex covers of the diagonal uncertainty set U (2.3) and give the performance of the
corresponding piecewise static policy for each example.

Example 1 For all j = 1, . . . ,m let,

U j =
{

diag(v)
∣∣∣∣

m∑

i=1

vi ≤ 1, 0 ≤ v j ≤ 1
m

}

.

Note that ∪
1≤ j≤m

U j is a convex cover of U with m number of pieces. From Lemma 5,

we have the following.

Proposition 1 For the cover defined in Example 1, the performance of piecewise static
policy is

ρ = m − 1+ 1
m
.

Example 2 Let Sm be the set of permutations in {1, 2, . . . ,m} and let τ =
(1, 1

2 ,
1
3 , . . . ,

1
m ).

For all σ ∈ Sm let,

Uσ =
{

diag(v)
∣∣∣∣0 ≤ vi ≤ τσ (i) ∀i ∈ [m] ,

m∑

i=1

vi ≤ 1

}

,

Note that ∪
σ∈Sm

Uσ is a convex cover of U with m! number of pieces. From Lemma 5,

we have the following.

Proposition 2 For the cover defined in Example 2, the performance of piecewise static
policy is

ρ =
m∑

i=1

1
i
= O(log(m)).

We would like to note that for the cover in Example 1, the number of pieces is
polynomial and the performance bound for the piecewise static policy is Ω(m) which
is the same order as the approximation bound for static policies. For Example 2, the
performance bound for the piecewise static policy is O(logm) which is significantly
better. However the number of pieces is exponential. Since it is difficult to compute
a piecewise static policy with exponentially many pieces, it motivates us to consider
the problem of finding piecewise static policies with a polynomial number of pieces
that have a significantly better performance than the static policy.

123



Piecewise static policies for two-stage adjustable… 659

4 Lower bound for polynomial pieces

In this section, we show that, surprisingly there is no piecewise static policy with
polynomial number of pieces that gives an approximation bound significantly better
than the static policies in the worst-case . In particular, we consider the diagonal
uncertainty set (2.3). Bertsimas et al. [10] present family of instances where zAR(U) =
m · zRob(U) for the uncertainty set (2.3). We show that for any fixed ϵ > 0, there is no
piecewise static policywith polynomial number of pieceswith approximation bound as
O(m1−ϵ). Our proof is based on a combinatorial argument that exploits the structural
result for piecewise policies for (2.3) derived in the previous section. We have the
following theorem.

Theorem 3 (Main result) For any given 0 < ϵ < 1 and k ∈ N, there are instances
of uncertainty set U ⊂ Rm×n

+ with sufficiently large m such that for any convex cover
(U1,U2, . . . ,Up) of U with p ≤ (max(m, n))k pieces,

max(ρ(U1), . . . , ρ(Up)) > m1−ϵ .

Proof Consider the diagonal uncertainty set U ⊂ Rm×m
+ defined in (2.3) for m suf-

ficiently large. Consider (U1,U2, . . . ,Up) a convex cover of U such that p ≤ mk .
Without loss of generality, we can assume (U1,U2, . . . ,Up) are down-monotone and
p = mk . Furthermore, from Lemma 4, it is sufficient to consider Ui of the following
form for all i ∈ [p]:

Ui =
{

diag(v)
∣∣∣∣

m∑

i=1

vi ≤ 1, 0 ≤ v j ≤ τi j ∀ j ∈ [m]
}

.

Suppose for the sake of contradiction,

max(ρ(U1), . . . , ρ(Up)) ≤ m1−ϵ . (4.1)

From Lemma 5, for all i ∈ [p], ∀h > 0,

κ(T (Ui , h)) =
m∑

j=1

τi j ≤ m1−ϵ

where the last inequality follows from the assumption (4.1). Let

β =
⌊
1
ϵ

⌋
.

We define the following discrete set

W =
{

diag
(
a1
γ
, . . . ,

am
γ

) ∣∣∣∣
m∑

i=1

ai = γ , ai ∈ {0, 1},∀i ∈ [m]
}

,
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where γ = βk + k + 1. Note thatW is a discrete subset of U with cardinality

|W| =
(
m
γ

)
=
(

m
βk + k + 1

)
= Θ

(
mβk+k+1

)
.

We have

W ⊆ U = ∪
1≤i≤p

Ui .

Hence there exists 1 ≤ ℓ ≤ mk such that Uℓ contains at least
|W |
mk elements of W . In

particular, there exists Ŵ ⊆ W such that Ŵ ⊆ Uℓ and

|Ŵ| ≥ |W|
mk = Θ(mβk+1). (4.2)

Then ∀ j ∈ [m] and ∀a ∈ Ŵ,

a j

βk + k + 1
≤ τℓj .

Therefore, ∀ j ∈ [m],
max
a∈Ŵ

eTj a

βk + k + 1
≤ τℓj ,

which implies

m∑

j=1

max
a∈Ŵ

eTj a ≤ (βk + k + 1)
m∑

j=1

τℓj

≤ (βk + k + 1)m1−ϵ

< (βk + k + 1)m
β

β+1 ,

where the last inequality follows from 1
β+1 < ϵ. Denote t = (βk + k + 1)m

β
β+1 and

S = { j ∈ [m]
∣∣ ∃a ∈ Ŵ, a j = 1}.

Then, |S| ≤ ⌊t⌋. We have,

Ŵ ⊆
{

diag
(
a1
γ
, . . . ,

am
γ

) ∣∣∣∣
∑

i∈S
ai = γ , ai ∈ {0, 1},∀i ∈ [m]

}

.

Therefore,

|Ŵ| ≤
(|S|

γ

)
= Θ

(
|S|γ

)
.
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We have,

|S|γ = |S|βk+k+1 ≤ ⌊t⌋βk+k+1

≤ tβk+k+1

=
(
(βk + k + 1)m

β
β+1

)(βk+k+1)

= (βk + k + 1)(βk+k+1) · mβk+ β
β+1

Then,

|Ŵ| ≤ Θ

(
mβk+ β

β+1

)
.

On the other hand, |Ŵ| ≥ Θ
(
mβk+1) (4.2) which is a contradiction form sufficiently

large. ⊓+

The above theorem implies that ifwe restrict to piecewise policieswith a polynomial
number of pieces, we can not get significantly better policies than static in the worst-
case. This is quite surprising since piecewise static policies are more general than a
single static solution.

5 Conclusions

In this paper, we consider piecewise static policies to approximate two-stage adjustable
linear optimization problems under uncertainty. We relate the performance of the
piecewise static policy to the measure of non-convexity of a transformation of the
uncertainty pieces. We show that there is no piecewise policy with polynomially many
pieces that performs significantly better than a static solution in the worst-case. This
is quite surprising as piecewise static policy is a significant generalization of the static
policy but still does not give a better approximation for the adjustable robust problem
over the worst-case uncertainty set when restricted to a polynomial number of pieces.
Wewould like to note that although we show that the performance of a piecewise static
policy with polynomially many pieces is similar to the static policy in the worst-case,
the piecewise static policy can be better than static in many cases. It is an interesting
open question to study design of good piecewise policies with a given number of
pieces.

Acknowledgements O. El Housni and V. Goyal are supported by NSF Grants CMMI 1201116 and CMMI
1351838.

Appendix: Proof of Lemma 5

First, note that for h > 0,
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T (U , h) =
{(

v1

h1
,
v2

h2
, . . . ,

vm

hm

) ∣∣∣∣ (v1, v2, . . . , vm) ∈ T (U , e)
}
.

Then we can easily prove that κ(T (U , h)) = κ(T (U , e)). In fact, let v ∈
conv(T (U , h)). Then,∑m

i=1 vi hi ei ∈ conv(T (U , e)). Therefore,

1
κ(T (U , e))

·
(

m∑

i=1

vi hi ei

)

∈ T (U , e).

Then,

1
κT ((U , e))

· v ∈ T (U , h),

which implies,

conv(T (U , h)) ⊆ κ(T (U , e)) · T (U , h),

and finally κ(T (U , h)) ≤ κ(T (U , e)). Similarly, we also have κ(T (U , h)) ≥
κ(T (U , e)). Now, it’s sufficient to show that κ(T (U , e)) = ∑m

i=1 τi . Let first show
that

conv(T (U , e)) =
{

(v1, v2, . . . , vm) ∈ [0, 1]m
∣∣∣∣

m∑

i=1

vi

τi
≤ 1

}

. (5.1)

Let v ∈ conv(T (U , e)). FromLemma1,we have v = ∑m
i=1 λi ai ei ,where

∑m
i=1 λi =

1, λi ∈ [0, 1] and 0 ≤ ai ≤ τi , ∀i ∈ [m]. We have,

m∑

i=1

vi

τi
=

m∑

i=1

λi ·
ai
τi

≤
m∑

i=1

λi = 1.

Conversely, let v ∈ Rm
+ such that,

m∑

i=1

vi

τi
≤ 1.

We have

v =
m∑

j=1

λ j a j e j ,

where for all j ∈ [m],

λ j =
v j
τ j∑m
i=1

vi
τi

and a j = τ j

m∑

i=1

vi

τi
.
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We have
∑m

j=1 λ j = 1 and a j ≤ τ j ∀ j ∈ [m]. Then, v ∈ conv(T (U , e)).
Now, we would like to find a lower bound for κ(T (U , e)). Let α ≥ 1 such that

conv(T (U , e)) ⊆ α · T (U , e). From (5.1), we have

(
τ 21∑m
i=1 τi

,
τ 22∑m
i=1 τi

, . . . ,
τ 2m∑m
i=1 τi

)

∈ conv(T (U , e))

Then, there exists diag(v) ∈ U and µ ∈ Rm
+,

∑m
i=1 µi = 1, such that

(
τ 21∑m
i=1 τi

,
τ 22∑m
i=1 τi

, . . . ,
τ 2m∑m
i=1 τi

)

= α · diag(v)Tµ,

i.e. ∀1 ≤ i ≤ m,

τ 2i∑m
j=1 τ j

= αµivi

From Cauchy–Shwartz inequality we have,

m∑

i=1

τ 2i
µi

≥
(

m∑

i=1

τi

)2

,

Then,

α

(
m∑

i=1

τi

)(
m∑

i=1

vi

)

≥
(

m∑

i=1

τi

)2

,

i.e.

α

(
m∑

i=1

vi

)

≥
(

m∑

i=1

τi

)

,

therefore,

α ≥
m∑

i=1

τi ,

where the last inequality follows from
∑m

i=1 vi ≤ 1. To finish our proof we show that,

conv(T (U , e)) ⊆
(

m∑

i=1

τi

)

· T (U , e).
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Let v ∈ conv(T (U , e)), we have from (5.1),

m∑

i=1

vi

τi
≤ 1.

For all 1 ≤ j ≤ m, let define,

µ j =
v j
τ j∑m
i=1

vi
τi

and b j = τ j

∑m
i=1

vi
τi∑m

i=1 τi
.

Then

v =
(

m∑

i=1

τi

)

· diag(b)Tµ

We have ∀ j ∈ [m],

b j ≤ τ j∑m
i=1 τi

≤ τ j

where the second inequality holds because
∑m

i=1 τi ≥ 1. Furthermore,

m∑

j=1

b j =
m∑

i=1

vi

τi
≤ 1.

Therefore, diag(b) ∈ U . Since
∑n

j=1 µ j = 1, diag(b)Tµ ∈ T (U , e). We conclude
that

v ∈
(

m∑

i=1

τi

)

· T (U , e).

⊓+
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